Требования к характеристикам радиоинтерфейса системы подвижной радиотелефонной связи стандарта LTE

1. Диапазоны рабочих частот приведены в таблице № 1.

Таблица № 1. Диапазоны рабочих частот

Номер	Диапазон рабочих частот	Диапазон рабочих частот
диапазон	(базовая станция принимает,	(базовая станция принимает,
а рабочих	абонентский терминал передает)	абонентский терминал передает)
частот	FUL_low - FUL_high	FDL_low – FDL_high
1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz
2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz
3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz
4	1710 MHz – 1755 MHz	2110 MHz – 2155 MHz
5	824 MHz – 849 MHz	869 MHz – 894MHz
7	2500 MHz - 2570 MHz	2620 MHz – 2690 MHz
8	880 MHz - 915 MHz	925 MHz – 960 MHz
9	1749,9 MHz – 1784,9 MHz	1844,9 MHz – 1879,9 MHz
10	1710 MHz – 1770 MHz	2110 MHz – 2170 MHz
11	1427,9 MHz - 1447,9 MHz	1475,9 MHz - 1495,9 MHz
12	698 MHz - 716 MHz	728 MHz — 746 MHz
13	777 MHz – 787 MHz	746 MHz – 756 MHz
14	788 MHz – 798 MHz	758 MHz – 768 MHz
17	704 MHz – 716 MHz	734 MHz — 746 MHz
18	815 MHz – 830 MHz	860 MHz – 875 MHz
19	830 MHz - 845 MHz	875 MHz – 890 MHz
20	832 MHz - 862 MHz	791 MHz – 821 MHz
21	1447,9 MHz - 1462,9 MHz	1495,9 MHz - 1510,9 MHz
33	1900 MHz - 1920 MHz	1900 MHz – 1920 MHz
34	2010 MHz - 2025 MHz	2010 MHz – 2025 MHz
35	1850 MHz - 1910 MHz	1850 MHz – 1910 MHz
36	1930 MHz - 1990 MHz	1930 MHz – 1990 MHz
37	1910 MHz - 1930 MHz	1910 MHz – 1930 MHz
38	2570 MHz - 2620 MHz	2570 MHz - 2620 MHz
39	1880 MHz - 1920 MHz	1880 MHz - 1920 MHz
40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz

2. Разнос несущих приема и передачи (дуплексный разнос) приведен в таблице № 2.

Таблица № 2. Разнос несущих приема и передачи (дуплексный разнос)

Диапазон рабочих	Разнос несущих приема и передачи
частот	(дуплексный разнос)
1	190 МГц
2	80 МГц
3	95 МГц
4	400 МГц
5	45 МГц
6	45 МГц
7	120 МГц
8	45 МГц
9	95 МГц
10	400 МГц
11	48 МГц
12	30 МГц
13	–31 МГц
14	–30 МГц
17	30 МГц
18	45 МГц
19	45 MHz
20	–41 МГц
21	48 МГц

3. Разнос несущих соседних частотных каналов составляет:

(BWChannel(1) + BWChannel(2))/2,

где BWChannel(1) и BWChannel(2) являются полосами каналов.

- 4. Шаг сетки частот составляет $100 \ \mathrm{k}\Gamma\mathrm{u}$ для всех полос частотных каналов.
 - 5. Номер частотного радиоканала (EARFCN).

Значение номера частотного радиоканала (EARFCN) определяется в диапазоне $0-65\,535$. Соотношение между значением номера частотного канала (EARFCN) и частотой несущей в МГц в нисходящем направлении определяется выражением:

FDL = FDL low + 0.1(NDL - NOffs-DL),

где FDL_low и NOffs-DL приведены в таблице № 3,

NDL – номер нисходящего частотного радиоканала (EARFCN).

Таблица № 3. Значения номера частотного радиоканала

Диапазо	Ни	сходящая л	иния	Восходящая линия			
н рабочих частот	FDL_low (МГц)	NOffs- DL	Диапазон значений NDL	FDL_low (МГц)	NOffs-DL	Диапазон значений NUL	
1	2110	0	1	2110	0	1	
2	1930	600	2	1930	600	2	
3	1805	1200	3	1805	1200	3	
4	2110	1950	4	2110	1950	4	
5	869	2400	5	869	2400	5	
6	875	2650	6	875	2650	6	
7	2620	2750	7	2620	2750	7	
8	925	3450	8	925	3450	8	
9	1844,9	3800	9	1844,9	3800	9	
10	2110	4150	10	2110	4150	10	
11	1475,9	4750	11	1475,9	4750	11	
12	728	5000	12	728	5000	12	
13	746	5180	13	746	5180	13	
14	758	5280	14	758	5280	14	
17	734	5730	17	734	5730	17	
18	860	5850	18	860	5850	18	
19	875	6000	19	875	6000	19	
20	791	6150	20	791	6150	20	
21	1495,9	7050	21	1495,9	7050	21	
33	1900	36 000	33	1900	36 000	33	
34	2010	36 200	34	2010	36 200	34	
35	1850	36 350	35	1850	36 350	35	

6. Полоса частот, занимаемая одним частотным каналом.

Значения полосы частот, занимаемые одним частотным каналом, приведены в таблице N 4.

Таблица № 4. Значения полосы частот, занимаемые одним частотным каналом

Ширина полосы частот	1 /	3	5	10	15	20
BWChannel (МГц)	1,7	5	3	10	13	20

Вид модуляции:

двоичная фазовая модуляция (BPSK),

квадратурная фазовая модуляция (QPSK),

квадратурная амплитудная модуляция с числом уровней 16 или 64 (16QAM или 64QAM).

Возможные значения полос частот, занимаемых одним частотным каналом, для различных рабочих диапазонов частот приведены в таблице N = 5.

В режиме частотного дуплексного разноса (FDD) значения полос частот для нисходящего и восходящего каналов принимаются одинаковыми (симметричными).

Таблица № 5. Возможные значения полос частот для различных рабочих диапазонов

	Ширина полосы частот									
Рабочий диапазон частот	1,4 МГц	3 МГц	5 МГц	10 МГц	15 МГц	20 МГц				
1	нет	нет	да	да	да	да				
2	да	да	да	да	да	да				
3	да	да	да	да	да	да				
4	да	да	да	да	да	да				
5	да	да	да	да	нет	нет				
6	нет	нет	да	да	нет	нет				
7	нет	нет	да	да	да	да				
8	да	да	да	да	нет	нет				
9	нет	нет	да	да	да	да				
10	нет	нет	да	да	да	да				
11	нет	нет	да	да	нет	нет				
12	да	да	да	да	нет	нет				
13	нет	нет	да	да	нет	нет				
14	нет	нет	да	да	нет	нет				
17	нет	нет	да	да	нет	нет				
18	нет	нет	да	да	да	нет				
19	нет	нет	да	да	да	нет				
20	нет	нет	да	да	да	да				
21	нет	нет	да	да	да	нет				
33	нет	нет	да	да	да	да				
34	нет	нет	да	да	да	нет				
35	да	да	да	да	да	да				
36	да	да	да	да	да	да				
37	нет	нет	да	да	да	да				
38	нет	нет	да	да	да	да				
39	нет	нет	да	да	да	да				
40	нет	нет	да	да	да	да				

Примечание: «Нет» обозначает, что использование указанной ширины полос частот невозможно для данного диапазона, «да» – возможно.

Предельно допустимые значения ослабления мощности, излучаемой в соседних частотных каналах

Предельно допустимые значения ослабления мощности, излучаемой в соседних частотных каналах, приведены в таблице № 1.

Таблица № 1. Предельно допустимые значения ослабления мощности, излучаемой в соседних частотных каналах

Полоса канала (МГц)	1,4	3,0	5	10	15	20
Предельно допустимые значения (дБ) уровня излучения	30	30	30	30	30	30
Смещение (МГц) центральной частоты соседнего канала	±1,4	±3,0	±5	±10	±15	±20

Для абонентского терминала, имеющего в своем составе вспомогательное приемопередающее устройство малого радиуса действия, работающее

в диапазоне 2,4 ГГц, предельно допустимые значения ослабления мощности, излучаемой в соседних частотных каналах, приведены в таблице № 2. Указанные в таблице № 2 требования выполняются при работе этого устройства в режиме передачи потока данных на максимальной мощности передатчика этого устройства.

Таблица № 2. Допустимое ослабление мощности излучения в соседних каналах

Соседний канал	Минимально допустимое ослабление излучения в соседних каналах относительно несущей, дБ
+5 МГц или –5 МГц	33
+10 МГц или –10 МГц	43

Требования к уровням продуктов интермодуляции передатчика

Максимально допустимые уровни продуктов интермодуляции для случая, когда на порте передающей антенны кроме полезного сигнала имеется мешающий сигнал, приведены в таблице. Значения параметров полезного

и мешающего сигналов и значения полосы измерительного фильтра приведены в таблице.

Таблица. Требования к уровням продуктов интермодуляции передатчика

Полоса частот канала (МГц)	5		10		15		20	
Смещение частоты	5	10	10	20	15	30	20	40
мешающего сигнала (МГц)	3	10	10	20	1,3	30	20	40
Уровень синусоидального					40			
мешающего сигнала (дБн)	-40							
Максимальные допустимые								
уровни продуктов	-29	-35	-29	-35	-29	-35	-29	-35
интермодуляции (дБн)								
Измерительная полоса	4,5	15	9,0	0.0	12.5	12.5	18	18
(МГц)	4,3	4,5	9,0	9,0	13,5	13,5	10	10

Предельно допустимые уровни побочных излучений, внутриполосных и внеполосных излучений абонентского терминала

Требования к допустимым значениям уровней внутриполосных излучений приведены в таблице № 1.

Таблица № 1. Требования к допустимым значениям уровней внутриполосных излучений

Параметр	Предельное значение	Примечание
Уровень помехи по	-25	
зеркальному каналу		
(дБ)		
Внутриполосные	-25	выходная мощность > 0 дБм
излучения (дБн)	-20	-30 дБм ≤ выходная мощность ≤ 0 дБм
	-10	–40 дБм ≤ выходная мощность < –30 дБм

Требования к допустимым значениям уровней внеполосных излучений приведены в таблице № 2.

Таблица № 2. Требования к допустимым значениям уровней внеполосных излучений

Уровень внеполосных излучений(дБм)									
Расстройка									
от края							Измери-		
полосы	 1.4 ΜΓτι	3,0 МГц	5 MF11	 10 ΜΓπ	 15 ΜΓπ	$ _{20 \text{ M} \Gamma_{11}} $	тельная		
канала	1, 1 1, 11 11	ј.,о т и п ц	J	10 1111 11	15 1111 Ц	20 1111 14	полоса		
ΔfOOB							полоса		
(МГц)									
$\pm (0-1)$	-10	-13	-15	-18	-20	-21	30 кГц		
$\pm(1-2,5)$	-10	-10	-10	-10	-10	-10	1 МГц		
$\pm(2,5-2,8)$	-25	-10	-10	-10	-10	-10	1 МГц		
$\pm (2,8-5)$		-10	-10	-10	-10	-10	1 МГц		
$\pm (5-6)$		-25	-13	-13	-13	-13	1 МГц		
$\pm (6-10)$			-25	-13	-13	-13	1 МГц		
$\pm (10 - 15)$				-25	-13	-13	1 МГц		

$\pm (15-20)$			-25	-13	1 МГц
$\pm (20 - 25)$				-25	1 МГц

1. Предельные допустимые значения уровней побочных излучений приведены в таблице № 3 для частот, значения которых находятся выше частоты Δf_{OOB} (М Γ ц) от края полосы канала.

Таблица № 3. Значения расстройки от края полосы канала Δf_{OOB} (МГц) в зависимости от полосы канала LTE

Полоса канала LTE	1,4 МГц	3,0 МГц	5 МГц	10 МГц	15 МГц	20 МГц
Расстройка						
от края полосы	2,8	6	10	15	20	25
канала Δf_{OOB} (М Γ ц)						

Требования к допустимым значениям уровней побочных излучений приведены в таблице № 4.

Таблица № 4. Требования к допустимым значениям уровней побочных излучений

Диапазон частот	Максимально допустимый	Измерительная	
дианазон частот	уровень	полоса	
9 к Γ ц \leq f $<$ 150 к Γ ц	–36 дБм	1 кГц	
150 к Γ ц \leq f $<$ 30 М Γ ц	–36 дБм	10 кГц	
$30 \text{M} \Gamma \text{ц} \le \text{f} < 1000 \text{M} \Gamma \text{ц}$	−36 дБм	100 кГц	
1 ГГц ≤ f < 12,75 ГГц	–30 дБм	1 МГц	

Для абонентского терминала, имеющего в своем составе вспомогательное приемопередающее устройство малого радиуса действия, работающее в диапазоне 2,4 ГГц, требования к предельно допустимым значениям уровней побочных излучений приведены в таблицах №№ 5, 6. Указанные в таблицах №№ 5, 6 требования выполняются при работе этого устройства в режиме передачи потока данных на максимальной мощности передатчика этого устройства.

Таблица № 5. Общие требования

Диапазон частот (кроме частот, определенных в таблице № 1)	Измерительная полоса	Уровень излучений, не более, дБм
9 κΓц – 150 κΓц	1 кГц	-36
150 кГц – 30 МГц	10 кГц	-36
30 МГц – 1000 МГц	100 кГц	-36
1,0 ГГц – 12,75 ГГц	1 МГц	-30

Таблица № 6. Дополнительные требования к отдельным участкам диапазона частот

Диапазон частот	Измерительная полоса	Уровень излучений, не более, дБм
921 МГц – 925 МГц	100 кГц	-60
925 МГц – 935 МГц	100 кГц	-67
935 МГц – 960 МГц	100 кГц	-79
1805 МГц – 1880 МГц	100 кГц	–71
2110 МГц – 2170 МГц	3,84 МГц	- 60

Требования к чувствительности приемника

Значения величины эталонной чувствительности приемника при квадратурной фазовой модуляции (QPSK) приведены в таблице. Пропускная способность составляет не менее 95% максимальной пропускной способности эталонного измерительного канала при модуляции QPSK при значениях величины эталонной чувствительности приемника, приведенных в таблице.

Таблица. Значения величины эталонной чувствительности приемника

	Полоса частот канала					
Диапазон	1,4 МГц	3 МГц	<u>5 МГц</u>	10 МГц	15 МГц	20 МГц
частот	т,4 МП ц (дБм)	3 ми ц (дБм)	(дБм)	(дБм)	(дБм)	(дБм)
440101	(дрм)	(дрм)	(дви)	(дви)	(двм)	(дви)
1	2	3	4	5	6	7
1	_		-100	-97	-95,2	_ 9 4
2	-103,2	-100,2	-98	-95	-93,2	-92
3	-102,2	-99,2	-97	-94	-92,2	-91
4	-105,2	-101,7	-100	-97	-95,2	-94
5	-103,2	-100,2	-98	-95	,	
6			-100	-97		
7			-98	-95	-93,2	-92
8	-102,2	-99,2	-97	-94		
9			-99	-96	-94,2	-93
10			-100	-97	-95,2	-94
11			-100	-97		
12	-102,2	-99,2	-97	-94		
13			-97	-94		
14						
17	-102,2	-99,2	– 97	-94		
18			-100	- 97	-95,2	
19			-100	–97	-95,2	
20			– 97	-94		
21			-100	-97	-95,2	
33			-100	-97	-95,2	-94
34			-100	-97	-95,2	-94
35	-106,2	-102,2	-100	-97	-95,2	–94

36	-106,2	-102,2	-100	-97	-95,2	–94
1	2	3	4	5	6	7
37			-100	-97	-95,2	-94
38			-100	-97	-95,2	-94
39			-100	-97	-95,2	-94
40			-100	-97	-95,2	-94

Требования к подавлению продуктов интермодуляции в приемнике и уровням побочных излучений приемника

Пропускная способность составляет не менее 95% максимальной пропускной способности эталонного измерительного канала.

Значения параметров полезного сигнала и мешающего сигнала приведены в таблице N 1.

Таблица № 1. Параметры полезного сигнала и мешающего сигнала

Помольоти	Полоса частот канала (BW)						
Параметр	1,4 МГц	3 МГц	5 МГц	10 МГц	15 МГц	20 МГц	
Средняя мощность	REFSEN	IS + значен	ия, зави	сящие от	полосы ка	анала	
полезного сигнала	12	O	6	6	7	0	
(дБм)	12	12 8 6 6 7 9					
P _{Interferer 1}							
мощность 1-го							
мешающего			-46)			
(синусоидального)							
сигнала (дБм)							
P _{Interferer 2}							
мощность 2-го	-46						
мешающего							
(модулированного)							
сигнала (дБм)							
Полоса BW _{Interferer 2}							
2-го мешающего	1,4 3 5						
сигнала							
Расстройка	-BW/2-2,1 и +BW/2+2,1	-BW/2-					
F _{Interferer 1}	В W/2 2,1	4,5 и	 	-7,5 и $+$	RW/2 + 7	5	
1-го мешающего	$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$	+BW/2+		7,5 H	DW/2 /	,5	
сигнала (МГц)	D W/Z + Z,1	4,5					
Расстройка							
F _{Interferer 2}	2*F _{Interferer 1}						
2-го мешающего	△ Interferer I						
сигнала (МГц)							

Максимально допустимые уровни побочных излучений приемника не превышают значений, приведенных в таблице $N \ge 2$.

Таблица № 2. Общие требования к максимально допустимым уровням побочных излучений приемника.

Диапазон частот	Измерительная полоса	Максимальный уровень
30 М Γ ц \leq f < 1 Γ Γ ц	100 кГц	–57 дБм
1ΓΓц ≤ f ≤ 12.75	1 МГц	–47 дБм
ГГц		

Требования к параметрам встроенных в абонентские терминалы вспомогательных приемопередающих устройств малого радиуса действия, работающих в диапазоне 2,4 ГГц

- 1. Мощность передатчика устройства составляет не более 2,5 мВт.
- 2. Общий рабочий диапазон частот передачи и приема вспомогательного устройства составляет 2,4 2,4835 ГГц. Рабочие частоты устройства в конкретном абонентском терминале определяются и декларируются производителем в пределах общего диапазона.
- Предельно допустимые максимальные значения побочных излучений встроенного В абонентский терминал вспомогательного устройства радиуса действия (без побочных малого излучений приемопередатчика LTE) приведены в таблицах №№ 1, 2.
- 4. Различие между узкополосными и широкополосными излучениями в данном случае заключается в следующем. Если при измерении спектра побочных излучений анализатором с разрешающей способностью 100 кГц обнаружены составляющие спектра, менее чем на 6 дБ приближающиеся к предельно допустимому уровню широкополосных излучений, и если при переключении разрешающей способности на значение 30 кГц уровень этих составляющих изменится не более чем на 2 дБ, такие излучения считаются узкополосными, в противном случае широкополосными.

Таблица № 1. Предельно допустимые значения узкополосных побочных излучений

Диапазоны частот	Предельно допустимые уровни узкополосных побочных излучений		
	В режиме передачи	В дежурном режиме	
от 30 МГц до 1 ГГц	–36 дБм	-57 дБм	
выше 1 ГГц и до 12,75 ГГц	–30 дБм	–47 дБм	
от 1,8 до 1,9 ГГц от 5,15 до 5,3 ГГц	–47 дБм	–47 дБм	

Таблица № 2. Предельно допустимые значения широкополосных побочных излучений

Диапазоны частот	Предельно допустимые уровни широкополосны побочных излучений		
	В режиме передачи	В дежурном режиме	
от 30 МГц до 1 ГГц	−86 дБм/Гц	−107 дБм/Гц	
выше 1 ГГц и до 12,75 ГГц	−80 дБм/Гц	–97 дБм/Гц	
от 1,8 до 1,9 ГГц от 5,15 до 5,3 ГГц	−97 дБм/Гц	–97 дБм/Гц	

Приложение № к Правилам применения абонентских терминалов сетей подвижной

радиотелефонной связи стандарта LTE

Требования устойчивости абонентских терминалов к воздействию климатических и механических факторов внешней среды

1. Абонентские терминалы устойчивы к воздействию следующих климатических факторов внешней среды.

При эксплуатации:

температура окружающего воздуха: от -10° С (пониженная температура) до $+55^{\circ}$ С (повышенная температура) – рабочие значения;

относительная влажность:

65 % при +20°C – среднемесячное значение в наиболее теплый и влажный период при продолжительности воздействия 12 месяцев;

80% при $+25^{\circ}$ С — верхнее значение.

При хранении:

температура окружающего воздуха:

от $+5^{\circ}$ С (пониженная температура) до $+40^{\circ}$ С (повышенная температура);

относительная влажность:

65 % при +20°C – среднемесячное значение в наиболее теплый и влажный период при продолжительности воздействия 12 месяцев.

При транспортировании:

температура окружающего воздуха:

от +5°C до +40°C;

относительная влажность:

100% при $+25^{\circ}$ С – верхнее значение.

- 2. Абонентские терминалы работоспособны и сохраняют рабочие параметры при воздействии широкополосной вибрации в полосе $5-20~\Gamma$ ц со спектральной плотностью виброускорения $0.96~\text{m}^2/\text{c}^3~\text{и}$ в полосе $20-500~\Gamma$ ц со спектральной плотностью виброускорения $0.96~\text{m}^2/\text{c}^3$.
- 3. Абонентские терминалы работоспособны и сохраняют рабочие параметры после транспортирования в упакованном виде при механических воздействиях в виде ударов длительностью ударного импульса 6 мс при пиковом ударном ускорении 25g и числе ударов в каждом направлении 4000.

Приложение №

к Правилам применения абонентских терминалов сетей подвижной радиотелефонной связи стандарта LTE

Справочно

Список используемых сокращений

- 1. UMTS Universal Mobile Telecommunications System (универсальная система подвижной связи).
- 2. LTE Long Term Evolution (эволюция в течение длительного времени).
- 3. IMT-2000 International Mobile Telecommunications-2000 (международная мобильная связь 2000).
- 4. ETSI European Telecommunications Standards Institute (Европейский Институт Телекоммуникационных стандартов).
- 5. 3GPP 3-rd Generation Partnership Project (Партнерский Проект по системам 3-го Поколения).
- 6. GSM Global System for Mobile Communication (глобальная система подвижной связи).
 - 7. $ppm 10^{-6}$.
- 8. МСЭ-Р Международный союз электросвязи Сектор радиосвязи.
- 9. OFDM Orthogonal Frequency Division Multiplexing (мультиплексирование с ортогональным частотным разделением).
- 10. SC-OFDM Single-Carrier Frequency Division Multiple Access (многостанционный доступ с частотным разделением с одной несущей).
 - 11. FDD Frequency Division Duplex (частотный дуплекс).
 - 12. TDD Time Division Duplex (временной дуплекс).
- 13. PBCH Physical Broadcast Channel (физический вещательный канал).
- 14. PDCCH Physical Downlink Control Channel (физический нисходящий канал управления).
- 15. PDSCH Physical Downlink Shared Channel (физический нисходящий общий канал).
- 16. PUSCH Physical Uplink Shared Channel (физический восходящий общий канал).
- 17. PUCCH Physical Uplink Control Channel (физический восходящий канал управления).
- 18. PRACH Physical Random Access Channel (физический канал случайного доступа).
- 19. QPSK Quadrature Phase Shift Keying (квадратурная фазовая модуляция).

- 20. QAM Quadrature Amplitude Modulation (квадратурная амплитудная модуляция).
 - 21. CP Cyclic Prefix (циклический префикс).
- 22. CRC Cyclic Redundancy Check (циклический контроль по избыточности).
- 23. eNode-B Evolved Node B (усовершенствованная базовая станция).
- 24. HARQ Hybrid Automatic Repeat Request (гибридный автоматический запрос повторной передачи).
- 25. MIMO Multiple Input Multiple Output (технология использования нескольких передающих и нескольких приемных антенн).
- 26. TX Diversity Transmit Diversity (разнесение на передающей стороне).
 - 27. UE User Equipment (абонентское оборудование).
- 28. AWGN Additive White Gaussian Noise (аддитивный белый гауссовский шум).
 - 29. RB Resource Block (ресурсный блок).
- 30. EARFCN E-UTRA Absolute Radio Frequency Channel Number (абсолютный номер радиоканала LTE).
- 31. USIM Universal Subscriber Identity Module (универсальный идентификационный модуль абонента).
- 32. UICC Universal Integrated Circuit Card (универсальная встроенная карта).
- 33. PIN Personal Identification Number (персональный идентификационный номер).
- 34. SIM Subscriber Identity Module (универсальный идентификационный модуль абонента GSM).
 - 35. VLR Visitor Location Register (гостевой регистр).
 - 36. HLR Home Location Register (домашний регистр).
 - 37. ICC Integrated Circuit Card (встроенная карта).
- 38. IMEI International Mobile Equipment Identity (международный идентификатор оборудования подвижной станции).